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Abstract

The primary structure of a ribonucleic acid (RNA) molecule is a sequence of nu-
cleotides (bases) over the four-letter alphabet {4, C, G, U}. The secondary or tertiary
structure of an RNA is a set of base-pairs (nucleotide pairs) which form bonds between
A-U and C-G. For secondary structures, these bonds have been traditionally assumed
to be one-to-one and non-crossing. We consider the edit distance between two RNA
structures. This is a notion of similarity, introduced in [Proceedings of the Tenth
Symposium on Combinatorial Pattern Matching, Lecture Notes in Computer Science,
vol. 1645, Springer, Berlin, 1999, p. 281], between two RNA molecule structures taking
into account the primary, the secondary and the tertiary structures. In general this
problem is NP-hard for tertiary structures. In this paper, we consider this notion under
some constraints. We present an algorithm and then show how to use this algorithm for
practical applications. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

Ribonucleic acid (RNA) is an important molecule which performs a wide
range of functions in biological systems. In particular, it is RNA (not DNA)
that contains the genetic information of viruses such as HIV, and therefore
describes the effect of the functions of such viruses. RNA has recently become
the center of much attention because of its catalytic properties, leading to an
increased interest in obtaining structural information.

It is well known that secondary and tertiary structural features of RNAs are
important in the molecular mechanism involving their functions. The presump-
tion, of course, is that to a preserved function there corresponds a preserved mo-
lecular confirmation and, therefore, a preserved secondary and tertiary structure.
Therefore the ability to compare RNA structures is useful [1,3,4,6,7,9,10].

In an RNA secondary or tertiary structure, a bonded pair of bases (base-
pair) is usually represented as an edge between the two complementary bases
involved in the bond. It is assumed that any base participates in at most one
such pair. The RNA secondary structure is defined such that the edges of the
bonded pairs are non-crossing.

In [14,16], a similarity measure between RNA structures was introduced.
First three basic operations, insertion, deletion, and relabel, were defined on
base pairs and single bases. The measure between two RNAs is then defined to
be the minimum number of (weighted) operations that can transform one RNA
into the other. If both structures are secondary, then using the solution in [14],
we can compute the optimal solution using ordered tree edit distance algo-
rithms [5,15]. If at least one of the structures is secondary, then using the so-
lution in [16], one can find the optimal solution. When both structures are
tertiary, then the problem is NP-hard [16].

In this paper, we consider this problem under some constraints. Given two
RNAs R, and Ry, a set of base pairs {p;,...,pi, } from R, and a set of base
pairs {pa,,...,ps} from R,, we would like to find the minimum number of
(weighted) operations that can transform R; into R, under the condition that
p1, has be matched to p,, for some 1 <i<K.

We will present an algorithm for this problem. We will show that this al-
gorithm can be used to accommodate the situation where both structures are
tertiary structures.

2. Comparing two RNA structures

2.1. RNA structures and edit distance

The primary structure of an RNA molecule is a sequence of nucleotides
(bases) over the four-letter alphabet X = {4, C, G, U}. The secondary or ter-
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tiary structure of an RNA is a set of base-pairs (nucleotide pairs) which form
bonds between 4—U and C-G. Following Zuker [17-19], we assume a model
where there are no “knots” in the secondary structure. This means that for the
secondary structure, the bonds are non-crossing. For tertiary structures, there
IS No non-crossing restriction.

An RNA structure is represented by R(P), where R is a sequence of nucle-
otides and P C {1,2,...,|R|}” is a set of pairs of which each element (i, )
represents a base pair (R[i], R[j]). We use R[i] to represent the ith nucleotide of
R. We use R|[i..j] to represent the sequence of nucleotides from R[i] to R[j]. We
assume that base pairs in R do not share participating bases. Formally for any
(il7jl) and (iz,jz) in P:

j] 75 I, I 75]'2, and i1 =1 if and Ol’lly if j] ij.

Given an RNA structure R(P), we use S(R,P) to represent the set of
structural elements consisting of both its set of base-pairs and the remaining
unpaired nucleotides.

S(R,P) = PU{(i,i)|R][i] is not involved in any base pair in R}.

We use S(R,P)[i..j] to represent the set of structural elements in sequence
R[i..j].
SR, P)i.jl =A{r|r= (k1) € SRR,P), i<k, |<j}.

For r = (i,j) € S(R, P), we use labelz(r) to represent the label of r in R. If
i = j, then labelz(r) = R[i] = R[], otherwise labelz(r) = R[i|R[j]. Forr = (i,j) €
S(R,P), i and j are often called the 5 end and 3’ end of r, respectively. We
define left(r) =i and right(r) = ;.

Following the tradition in sequence comparison [8,11,12], we define three
operations, relabel, delete, and insert, on RNA structures. For a given RNA
structure R, each operation can be applied to either a base-pair in S(R, P) or an
unpaired base. Relabelling a base-pair is to replace one base-pair in S(R, P)
with another. This means that at the sequence level, two bases may be changed
at the same time. Deleting a base-pair is to delete the pair from S(R,P), re-
moving two bases from the sequence at the same time. Inserting a base-pair is
to insert a new base-pair into S(R, P), introducing two bases into the sequence
at the same time. Relabelling an unpaired base is to replace it with another
base. Deleting an unpaired base is to delete the base from the sequence. In-
serting a base is to insert a new base into the sequence as an unpaired base.
Note that there is no relabel operation that can change a base-pair to an un-
paired base or vice versa.

The assumption here is that a base-pair is a whole entity. One cannot delete
one base of a base-pair and change the other base of the same base-pair. This
assumption seems fit better with the comparative analysis method used either
manually or automatically by biologists.
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Following [13,15,16], we represent an edit operation as a — b, where a and b
are either 4 (the empty structural element) or they are both labels of base-pairs
from {4,C,G,U} x {4,C,G,U} or unpaired bases from {4,C, G, U}.

We call ¢ — b a change operation if a # 4 and b # /; a delete operation if
b = J; and an insert operation if a = A.

Let S be a sequence sy, . .., s; of edit operations. An S-derivation from RNA
structure 4 to RNA structure B is a sequence of RNA structures Ay, ..., A4
such that 4 = A4y, B = A4;, and 4,_; — 4; via s; for 1 <i<k.

Let y be a cost function which assigns to each edit operation a — b a
nonnegative real number y(a — b). We constrain y to be a distance metric.
That is:

e ya—b)=0, ya—a)=0;
e y(a—b) =7 — a); and
* ya—c)<yla—b)+y(b—c).
We extend y to a sequence of edit operations S =sy,...,s; by letting
_ N\l ,
7(8) =225 7(si)-

The edit distance between two RNA structures is defined by considering the
minimum cost edit operation sequence that transforms one structure to the
other. Formally the edit distance between R;(P;) and R,(P,) is defined as:

D(Ri(P),Ry(P,)) = mTin{y(T) |T is an edit operation sequence taking

S(Ry,P) to S(Ry, P)}.

2.2. Mapping between RNA structures

Let » = (r,r,) and s = (s;,s,) be two elements in S(R, P) of an RNA R(P).
We define the relation between r and s as follows. We say r is before s if r. < s;.
We say r is cross-before s if r; < s; < r, <s,.. We say r is inside s if s; < r; and
r. < s,. Fig. 1 gives an illustration of these concepts.

Let R (P)) and R,(P,) be two RNA structures. Formally we define a triple
(M, Ry, R,) to be a mapping from R, (P;) to Ry(P;), where M is a binary relation
on S(Ry, P) x S(Ry, P;) such that
1. For any (r,s) in M,

r is a base-pair in P; if and only if s is a base-pair in P.

r S r S S
NN N
before cross-before inside

Fig. 1. Relationship between r and s.
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2. For any pair of (r,s1) and (r2,5;) in M,
(a) r1 = ry if and only if s = s, (M is one-to-one).
(b) ry is before rp if and only if s; is before s;.
(c) ry is inside ry if and only if s; is inside s;.
(d) r1 is cross_before ry if and only if sy is cross_before s;.
We will use M instead of (M, R,R,) if there is no confusion. Let M be a
mapping from R (P;) to R,(P,). Then we can similarly define the cost of M:

y(M) = Y p(labelg, () — labelg,(s)) + > y(labelg, (r) — 1)

(rs)eM rgM
+ 3 (4 — labely, (s)).
SEM

Mappings can be composed. Let M| be a mapping from R, (P;) to R,(P,) and
M, be a mapping from R,(P,) to R;(P;). Define

MyoM, ={(r,t)|3s s.t. (r,s) € My and (s,¢) € M,}.

Lemma 1.
1. M, o M, is a mapping between R,(P;) and R;(P;).
2. y(My o My) <y(My) + y(Ms).

Proof. From [16]. O

The relation between a mapping and a sequence of edit operations is as
follows.

Lemma 2. Given S, a sequence sy, . .. ,s; of edit operations from R\ (P,) to Ry(P),
there exists a mapping M from R\(Py) to Ry(P,) such that y(M)<y(S). Con-
versely, for any mapping M, there exists a sequence of edit operations such that
7(S) = p(M).

Proof. From [16]. O

Based on the lemma, the following theorem states the relation between the
distance and the mappings.

Theorem 1.
D(R(P)),Ry(P,)) = miny{y(M)|M is a mapping from R\(P) to Ry(P,)}.

Proof. From [16]. O
2.3. Constrained edit distance

We now consider the edit distance between two RNAs with constraints.
Given R, (P,) and R,(P;) and a mapping M between them, we would like to find
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the edit distance between them with the condition that for any (r,s) € M, r is
constrained to match to s.

Formally given R, (P;) and R,(P,) and a mapping M between them, we define
the constrained edit distance between R;(P;) and R,(P,) with constraint M as
follows:

D(Ry(P1), Ro(P2), M)

= n}}p{y(M/) |M' is a mapping from R;(P;) to Ry(P,) and M C M'}.
The following lemma is immediate from this definition and Theorem 1.

Lemma 3.
D(R(P1), Ra(P2)) = D(R\(P1), Ra(P2), ),
D(R(P1), Ry (P2)) K D(R\(P1), Ro(P2), M).

Proof. Trivial. O

We consider the properties of mappings. Suppose that M is a mapping
between R;(P,) and R,(P). We define a binary relation Sy on
{0,1,...,|Ri |+ 1} x {0,1,...,|Ry| + 1} as follows:

Su = {(left(r), left(s)), (right(r), right(s)) | (r,s) € M}
U {(070)7 (|R1| + 17 |R2| + 1)}

Lemma 4. Given a mapping M between R\(P,) and Ry(P,), then Sy, satisfies the
following condition. For any (i, j1) and (i, j2) in Sy,

* iy =iy if and only if j1 = j,

e iy <iyif and only if ji < jr,

Proof. Immediate from the definition of mappings. [

From this lemma, S), can be represented as a sequence of ordered pairs as
follows, where iy < i1y1, ji < jis1 for 0<k < K:

Sy = ((io = 0,jo = 0), (i1, /1), (i2,.12), - - -, (ix = [Ri| + 1, jx = |Ro| + 1)).

Let (r,s) be a pair in a mapping M’ from R, (P;) to R,(P,), We say (r,s) is
compatible with M or Sy, if there exist k and / such that
I < left(r) < Ipy1»
Jr < left(s) < Jk+1»
I < I‘ight(l’) <1,
Jji < tight(s) < ji1.

Lemma 5. Suppose that M is a mapping between R\(P\) and R,(P), and
Sv = ((io, jo), (i1, J1), - - -, (ix, jx)). Let M’ be another mapping between R (P)
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and Ry (Py) such that M "M’ = 0, then M U M’ is a mapping if and only if for any
(r,s) € M', (r,s) is compatible with Sy.

Proof. Suppose that for any (r,s) € M, (r,s) is compatible with Sy,. Let (r,s;)
and (r,,s,) be in M UM’, we want to show that they satisfy the mapping
condition. We will only consider the case where (r,s1) is in M and (r,, s,) is in
M’ since M and M’ are both mappings. We now assume that »; and r, are both
base pairs, and therefore s; and s, are also base pairs. Other cases where either
r| or r, is a single base are easier to analyse and are omitted for brevity.

Since (7,s) is in M, there exist k and / such that i, = left(r), i, = right(r),
Ji = left(sy), and j, = right(s;). By the definition of compatible, we have
left(ry) < i, if and only if left(s;) < j, and right(r) <j, if and only if
right(s,) < j,, where ¢t = k, /. This means that the relation between  and r, and
the relation between s, and s, are the same. Therefore M U M’ is a mapping.

On the other hand, suppose that M UM’ is a mapping, but there is a
(r,s) € M’ such that (7, s) is not compatible with Sj,. Then there is a k such that
either left(r) < i; and left(s) > ji or right(r) < i; and right(s) > j;. Note that
we do not consider the cases where, for some k, left(r) =i, left(s) = ji,
right(r) = i, or right(s) = j;. The reason for this is that base pairs do not share
end bases and M N M’ = (). This means that there is some (7, ;) € M such that
(r,s) and (r1,s;) do not satisfy mapping conditions. Therefore M U M’ is not a
mapping which is a contradiction. [

3. Algorithms

In this section, we assume that R;(P;), R,(P,), and M are given and
Su = ((io, jo), (v, 1), - -, (ik, jx))-

Let M, ={s=(l,r)|]# r and 3¢ such that (s,) e M}, and M, = {t=
(I,r)|1 # r and Js such that (s,7) € M}. We now consider the case where at
most one of P, — M; and P, — M, is a tertiary structure. We present an algo-
rithm which solves this problem. Our algorithm can be used for comparing
tertiary structures in practical application.

3.1. Properties

We use a bottom—up approach. We consider smaller substructures first and
eventually consider the whole structure.

We first consider how the given mapping M will limit the substructures we
have to consider. We say i and j are consistent with respect to Sy, if there is a k
such that either i = iy and j = j; or iy <i < iy and ji < j < jry1-

For any D(R,[l,..r1], Ry[l>..r2]) such that either /, and /, are not consistent or
r1 and r, are not consistent, there exists a k& such that either /; <i, <r, but
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Ji < horj,>ry,orl<j, <rpbutiy <Iori > r.Inboth cases, D(R[l,..r1],
R>[1,..r1]) is not useful since one of the matching elements in M has to be deleted.

We can now consider how to compute D(R;[/y..r1], R2[[>..r2]), where (I}, [5)
and (ry,r,) are consistent with respect to Sy,.

Let Si[l..m] and S,[1..n] be arrays containing pairs in S(R;, P, — M)[l;..r]
and S(R,, P, — M,)[l,..r;], sorted by 3’ end.

Let Si[i] = (s1,41) and S:[j] = (s2,1), we define left[i], cross_left,[i]] and
cross_weight, [i] as follows; left /], cross_left;[/] and cross_weight, /] are defined
similarly.

left,[i] = max{k} Si[k]'s 3’ end is less than sy,
=30 if no such k exists,
1 if there exists a £ < i such that
cross_left; [i] = Si[k] is cross-before S, [i],
0 if no such k exists,
cross_weight, [i] = Z p(labelg, (S1]k]) — 4).

1 <k<i,Si[k] is cross-before S [i]

Again, let Si[i] = (s1,#) and Sy[j] = (s2,%). We now define D (i, j) and D, (i, j)
as follows.

D, (l,j) = D(R] U]..t]],Rz[lz..tz],M),
Dz(l,]) = D(R1[Sl..tl},Rz[Sz..tz],M).

Lemma 6. Suppose that i = iy and j = ji, then

Di(i,j))=Dy(i—1,j—1).
Proof. As we require that M be a part of the mapping between R,(P;) and
R,>(P,), the actual costs of elements in M do not affect the final solution.
Therefore we can pre-calculate the cost of the constraints and assume that the

cost is zero in our algorithm. [

Lemma 7. Suppose that i =i, and j, < j < jiy1, then
D] (l,]) = D](l,] — 1) + '))(}u — labele(Sz[j])).

Proof. In this case, since iy must match to ji, S:[j] has to be inserted. O

Lemma 8. Suppose that iy <i < iy and j = ji, then
Dy(i,j) = Di(i — 1, ) + y(labelg, (S1[i]) — 2).

Proof. In this case, since i; must match to j;, S;[i] has to be deleted. O
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In the rest of this section, we assume that there is no k such that i = i; or
J =k
Lemma 9. Suppose that S,li] is a single base and S,|j] is a base pair or vice versa,
then

. [ Di(i—1,))+ y(labelg, (S1[i]) — 4),
Dy(t,j) = min { Di(i,j— {) +9(4 — labele, (S:[1])).

Proof. Since a single base cannot be matched to a base pair, we must insert or
delete either the single base or the base pair. [

Lemma 10. Suppose that S;[i] and S,[j] are both single bases, then

{Dl (i — 1,)) + y(labelg, (S, [i]) — 2),
D\ (i,j) =min ] D;(i,j — 1) + y(1 — labelg, (S2]j])),
Dy(i —1,j — 1) + y(labelg, (S1[i]) — labelg, (S:[/]))-

Proof. In this case, one can either delete one of the single bases or match them
together. [

Lemma 11. Suppose that S;[i] and S,[j] are both base pairs and S;[i] and S,[j] are
not compatible with Sy, then

. [ Dy(i — 1,)) + y(labelg, (Si[i]) — A),
D (i, j) = min { Dy(i,j — {) + Mf labelg, (S,[]))-

Proof. In this case, one can delete either S[i] or S,[j] because matching S [i]
with S,[j] will violate mapping conditions. O

Lemma 12. Suppose that S;[i] and S,[j] are both base pairs and S, [i] and S,[j] are

compatible with Sy. If left[i] #£0, lefty[j] #0, crossleftli]#0, or

cross_left[j] # 0, then

Dl(i - 17]) + y(labelRl (Sl [l]) - /l)v

Dy(i,j — 1) + p(4 — labelg, (S2[/])),

D, (lefty [i], lefty[f]) + Da(i, j) + cross_weight, [7]
+cross_weight,[/].

D (i,j) = min

Proof. Let S|[i] = (s1,#;) and S,[j] = (s2,%). Consider the best mapping be-
tween R;[/,..t;] and Ry[l,..tp]. If S\[i] = (s1,4) is not in the mapping, then

Dl(l,]) = Dl(l — 1,]) + y(labelRl (S1 [l]) — })

If Sy[j] = (s2,%) is not in the mapping, then
D(i,j) = Di(i,j — 1) + (2 — labelg,(S2[]])).
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If both Si[i] = (s1,4) and S,[j] = (s2,%) are in the mapping, then they should
map to each other by the definition of mapping. In this case, since one of the
structures is a secondary structure, any base pair cross-before S [i] or S,[;] will not
be in the mapping and should be deleted. Therefore, if left, [i] # 0 or left,[j] # 0,

D(i,j) = Dy (left,[i], left,[j]) + D1 (i, j) + cross_weight, [i]
+ cross_weight,[/].

If left;[i]] = 0 and left,[j] = 0, and cross_left[i] # 0, or cross_left[j] # 0, then
D(i,j) = D1(i, j) + cross_weight, [i] 4+ cross_weight,[/].

If we define D(0,0) = 0, then we can combine the above two cases. Note that
one of the cross-weights is zero since in secondary structures there is no crossing.
Also if S;[i] and S,[j] are both single bases, both cross-weights are zero. [J

Lemma 13. Suppose that S\[i] and S;[j] are both base pairs and S[i] and S,|j]
are compatible with Sy. If lefti[i] =0, left,[j] =0, cross.leftl] =0, and
cross_left[j] = 0, then

Dy (i — 1,j) + y(labelg, (S1[i]) — 4),
D (i,j) = min ¢ Dy(i,j — 1) 4+ p(1 — labelg, (S2[/])),
Di(i —1,j— 1) + y(labelg, (S1[i]) — labelg, (S2[/]))-

Proof. Let S\[i] = (s1,41) and S,[j] = (s2,%). Consider the best mapping be-
tween R;[/;..t;] and Ry[l,..t2]. The first two cases are similar to Lemma 12. For
the last case, since there is no pair before or cross-before S;[i] or S,[j], Si[#],
1<k <i, is inside S)[i{] and S$[k], 1<k <, is inside S,[j]. Therefore
Dy (i,j) = Di(i — 1,j — 1) + y(labelg, (S [i]) — labelg, (S:[/])). O

3.2. Algorithm

From the above lemmas, we can compute D(R,(P;),R,(P,),M) using a
bottom-up approach. Since we only use D,(7,j) in Lemma 12, we only need to
compute these D(R,[l,..r1], Ra[l»..r2], M) such that (/,,7) € P, and (5,7,) € P.
Furthermore, by Lemma 13, we can reduce the computation from each pair of
base pairs to each pair of stems, where a stem in an RNA is a set of stacked
pairs of maximum size.

Given R (P;) and R,(P,), we can first compute sorted stem lists L; for R, and
L, for R,. It follows from the above discussion that, for each pair of stems
Li[i] = (I1,r1,k) and L,[j] = (12,72, k2) such that (/,,/,) and (ry,7,) are con-
sistent with Sy,, we have to compute D(R,[/, 1], R2[l2, 2], M). Fig. 3 shows the
algorithm. We use Lemmas 9-13 to compute D(R;[/y, ], R2[l2, 7], M). Fig. 2
shows this computation.

Let Ri[l..m](P;) and R[1..n](P>) be the two given RNA structures. Let
stem(R;) and stem(R,) be the number of stems in R; and R,, respectively.
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Input: R [ll..rl],Pl, Rz[lg..’r‘z],PQ, and M
SM = {(070)7 (ilvjl)) (ZKa]K)}
where i1 <1 < i and 41 <71 <7
and jr—1 <l2 < jr and ji—1 <712 < j

compute a sorted list S; of pairs in S(Ry[l1,71]);
compute a sorted list Sy of pairs in S(Rz[l2, r2]);

Let left(Sl[’ils]) = right(Sl[ils]) =lp_14s, 1 <8<~k
and left(Sz[th]) = I‘ight(Sg[jgt]) = Jh—1+s, 1 St <1l—k
Let 1:10 = O’ill‘lﬂ—l = |Sl| + 1
and jz, = 0,52,_4,, = |52/ +1

compute left;[] and lefta[];
compute cross_left;[] and cross_lefty];
compute cross_weight, [] and cross_weights|];

D1(0,0) =0

fort:=0tol -k
for j := js, + 1 to jo,,, — 1
Compute D1 (31,,7) as in Lemma 7
fori:=d, +1tody,,, —1
Compute D (i, jo,) as in Lemma 8
for i := 'ilt +1to i1z+1 -1
fOI‘j :=j2¢ +1to jQH_l -1

Compute D1(2,7) as in Lemma 9, 10 11, 12, and 13

Dl(i1t+17j2t+l) = Dl(iltﬂ - 17j2:+1 - 1)
Fig. 2. Procedure: computing D(R,[l1,r1],Ra[lr, 1), M).

Input: Ri[1..m](P1), Ra[l..n](P), and M
Su = {(0,0), (i1, 41), .--(ix, JK) }-

Compute a sorted (by 3’ end) stem list Ly for R;.
Compute a sorted (by 3’ end) stem list Ly for Ro.

for i :=1 to |L4|
for j:=1 to |Lo|
let Llll = (ilyjlakl)
let Ll-j] = (1:2‘.7’2,]{)2)
if (i1,71) and (i2, j2) are compatible with M
compute D(Rq[i1, j1], Ralia, j2])

compute D(R1[1,m](Py), Ra[1,n](P2), M)

Fig. 3. An algorithm: computing D(R,(P,), R,(P,),M).

69
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For the time complexity, the worst case would be that the constraint M is
empty. The time to compute D(R[l,r],Ra[l2,7],M) is bounded by
O(|S(Ry)| x |S(R2)|)- Since |S(R;)| < m and |S(R,)| < n, the time complexity of
the algorithm is O(stem(R;) x stem(R,) X m x n). The space complexity of the
algorithm is O(|S(R))| x |S(R)|) = O(m x n) since we only need one array to
hold D; and another to hold D.

3.3. Application to real RNA data

Since the problem of computing the optimal edit distance between RNA
tertiary structures (in the worst-case) is NP-hard, we restrict our attention to
features commonly found in real RNA structures in order to compute an edit
distance which is approximate, but close to optimal.

In the real applications, the input usually contains secondary and tertiary
interactions in the form of R(SUT), where S is a set of base pairs with no
crossings forming the secondary structure of R, and 7 is a set of tertiary base
pairs. The number of tertiary interactions, however, is always relatively small
compared with the number of secondary interactions. In addition, when com-
paring R, (S; U T}) and R,(S, U T»), one can assume that base pairs in S; should
match to base pairs in S, and base pairs in 7} should match to base pairs in 75.

Using our algorithm, the following method computes the approximate edit
distance when both RNAs contain tertiary interactions.

3.3.1. Method

1. Input: Rl(Sl U Tl) and Rz(Sz U Tg)
2. Compute D(R] (S] ),Rz(Sz))
3. Let M be the optimal mapping from step 2. Compute D(R;(S; UT)),

Ry(SUT),M).

Given R (S, UTy) and Ry(S; U T»), we first compute D(R;(S;), R2(S2)). Since
there is no tertiary interaction, we can compute the optimal solution and
produce the optimal mapping M. We then use M as a constraint and compute
D(R](S] U T]),Rz(S2 U Tz),M)

Essentially, this method tries to find the best secondary structure matching
first and ignores the tertiary interactions. Once this matching is found and
fixed, we then try to add in tertiary interactions by using this matching as a
constraint and put in another set of base pairs which within themselves have no
crossing, but can have crossings with the constrained base pairs in M. Al-
though this is not an optimal solution, in practice it produces a reasonable
result by matching most of the base pairs.

In the following, we assume that the cost of an operation on a base pair is no
less than the sum of the costs of the same operation on the two bases in the
base pair. This means that given base pairs r and s, we assume that:
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o y(r —s) = y(left(r) — left(s)) + y(right(r) — right(s)),
o y(r— ) = y(left(r) — 1) + y(right(r) — 1), and
o (4 —s) = (2 — left(s)) + (4 — right(s)).

3.3.2. Bounds on edit distance

We now prove the following lemmas which give the bounds of our method.
The optimal edit distance (the computation of which is NP-hard) is bounded
below by the secondary structure matching given in [14], and bounded above
by the constrained edit distance method given in this paper.

Lemma 14. Given R(S; UTy) and Ry(S, U T»), then
D(R(S1),R2(5,)) KD(R (S UTh),R(S2 U Ty)).

Proof. Consider the best mapping between R (S, U 7}) and R,(S, U T5): we want
to construct a mapping M between R;(S;) and Ry (S,).

For any (r,s) where » ¢ Sy U T, and s € S, U T5 (r and s are single bases), we
add it to M. For any (r,s) where r € S; and s € S,, we add it to M. For any
(r,s) where r € T} and s € T,, we can break the base pairs into single bases and
put (left(r),left(s)) and (right(r), right(s)) into M.

It is clear from the construction and our assumption that y(M)<
D(Rl(Sl UT]),RQ(SzuTz)). Therefore D(Rl(Sl),Rz(Sz))gD(Rl(Sl UTl),
R,(SUTD)). O

Lemma 15. Given R\(S;UT)) and Ry(S, U D), let M be the optimal mapping
between R\(S)) and Ry(S,) from the computation of D(R\(S1), R2(S,)), then
DRi(S1UT),R(SUD))<DR(S1UTY),R(S, U D), M).

Proof. Trivial. O
From Lemma 14 and 15 we have the following inequality, establishing upper
and lower bounds on our algorithm:
Theorem 2 (Bounds of algorithm).
D(R((S1),R2(8:)) K DR (S UTY),R2(S2 U Th))
<SDR(S1UT), R (S, UTh),M).

Proof. Immediate from above. O

3.3.3. Experimental results

We tested our method by performing experiments with seven RNA tertiary
structures taken from the Ribonuclease P database [2] (see Appendix A). Ri-
bonuclease P is the ribonucleoprotein endonuclease that cleaves transfer RNA
precursors, removing 5 precursor sequences and generating the mature 5’
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Table 1
Experimental results: boldface numbers represent constrained edit distance, roman numbers indi-
cate secondary structure distance

R, R, R; Ry Rs R R7
R, 0 232 236 211 222 282 286 248 249 216 216 243 243
R, 0 207 226 300 314 194 195 194 197 241 244
Rs 0 302 314 210 211 215 228 215 217
Ry 0 313 328 294 303 320 328
Rs 0 193 198 228 240
Re 0 225 225

See Appendix A for selected figures of these RNAs. R, — Alcaligenes-eutrophus; R, — Anacystis-
nidulans; Ry — Agrobacterium-tumefaciens; Ry — Bacillus-brevis; Rs — Borrelia-burgdorferi; Rg —
Bacteroides-thetaiotaomicron; R, — Chlorobium-limicola.

terminus of the tRNA. These seven RNAs are chosen from seven different
groups of the database. Some of the RNAs are quite similar, i.e. Ry, Rs and Ry,
one is quite different, i.e. R4, and others are in between, see Fig. 4.

We use a very simple score function, where for single bases y(a — b) = 0 if
a=b,y(a— b)=1if a # b; and for base pairs, y((a,b) — (¢,d)) =0ifa=c
and b=d, y((a,b) — (¢,d))=1if a=c and b#d or a#c and b=d,
y((a,b) — (c,d)) =21ifa# cand b #d.

The results are shown in Table 1 where for each pair of RNAs, there are two
numbers. The boldface number indicates the constrained edit distance measure
using our method (D(R;(S) U T1),Ry(S, U T»), M), which is an upper bound on
the optimal edit distance) and the other number indicates the lower bound
(D(R1(S1),R2(S3))) produced by ignoring tertiary interactions, which is pro-
duced in the process of computing the constrained edit distance. In general, the
upper and lower bounds are very close, which means that our method produces
an edit distance which is very close to optimal, and in some cases actually
reaches optimality.

4. Conclusion

We have presented a new algorithm to compute similarity measure between
RNA structures. We provide a method using this algorithm which can compute
the similarity measure in practical applications even when the inputs are RNA
tertiary structures.
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Appendix A. Selected RNA figures
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Fig. 4. Four RNAs taken from the RNase P database — in consequetive order, Ry, Ry, Ry, Rs. These
images taken from http://www.mbio.ncsu.edu/RNaseP/.
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Fig. 4. (continued).
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Bacillus brevis
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Fig. 4. (continued).
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U, Ribonuclease P RNA
G Bacteroides thetaiotaomicron 5482
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A
L(j; -G Sequence : L25702, Haas, et al, 1994 PNAS 91:2527
G Structure : Harris, et al., RNA (in press)

Image created 10/4/00 by JWBrown
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Fig. 4. (continued).
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